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Outline

• What is the Versatile Test Reactor (VTR)?
• LANL VTR Responsibilities & Associated Collaborators

− Neutronic and system confirmatory analyses
§ Note: System analyses not presented due to time constraints

− Extended Length Test Assembly – Cartridge Lead (ELTA-CL) design
• MCNP Neutronic Analyses Methodology, Results, & Conclusions
• ELTA-CL Purpose & Design Process
• Effects of Cartridge on VTR Core Baseline
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What is the VTR?

• The VTR is a sodium fast reactor (SFR) providing a very high fast flux irradiation capability
− Ternary metal fuel (U-Pu-Zr) fuel rod, liquid sodium coolant
− Numerous experimental locations within the core

• Why the VTR?
− New materials and reactor concept testbed
− VTR is intended to shorten the development and approval horizon for materials

LANL Responsibilities for the VTR:
• Neutronic and system supporting design analyses

− NEN-5 VTR confirmatory analyses using independent methods
§ The system response analyses are impressive, but not included here

• ELTA-CL (lead based experimental cartridge) design 
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NEN-5 VTR Responsibilities –
Neutronic Supporting Design Analyses

• VTR design (right) has primarily been conducted at ANL
• Radial view of the VTR layout

− U-Pu-Zr fuel assemblies 
§ 217 fuel rods per assembly

− Control rod assemblies
− Safety rod assemblies
− Experiment assemblies
− Reflector assemblies
− Shield assemblies
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NEN-5 VTR Responsibilities –
Neutronic Supporting Design Analyses

• MCNP model axial fidelity
− Highly detailed in the active core
− 4 axial regions in the active fuel

§ One refined fuel pin per assembly
− Characterize:

§ Reactivity and kinetic parameters
§ Neutron flux & power
§ Photon flux & power
§ Control rod worth
§ Safety rod worth
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NEN-5 VTR Responsibilities – Neutronic 
Supporting Design Analyses, Equilibrium 
Core Analysis

• Equilibrium core, what is it?
− ~60,000 depletion zones
− Equilibrium essentially achieved at cycle 10

• High-fidelity MCNP model allows in-depth 
physics analysis

• How to calculate this?
− Initially tried MATMOD or SWAPB
− Difficulties with both
− Eventually used inherent burnup coupled with 

manual material replacement via Python
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NEN-5 VTR Responsibilities – Neutronic 
Supporting Design Analyses

• High-fidelity MCNP model benefit
− Pin-cell model versus whole core
− Puzzling (unexpected) power peaking
− Cause and implications?

• New physical understanding garnered!
− Cause: Slowing of fast neutrons towards the top of 

the rod (middle)
− In reactor occurrence: Yes, but only sometimes 

(bottom)

• Particular importance for fuel failure mechanisms
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NEN-5 VTR Responsibilities – Neutronic 
Supporting Design Analyses

• Power distributions
− Total power, neutron and photon contributions
− Integral pin power peaking

§ Thermal limits implications

• Flux distributions 
− Neutrons and photons
− Flux values at each location proved 

invaluable during ELTA-CL 
design iterations

• Further design analyses
− Cartridge implications

Our work confirms the general design of the VTR core and 
highlights areas of increased importance
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ELTA-CL Design Process –
Purpose and Requirements

Axial dimension of ELTA-CL in the CAD updated

• What is the ELTA-CL?
• ELTA-CL purpose

− Westinghouse reactor concept

• Desired information
− Irradiated structural material erosion/corrosion
− Fuel performance behavior under expected irradiated conditions
− Irradiated material characteristics (irradiation growth, swelling, 

embrittlement)

• Requirements include
− Target fuel linear heat generation rate (LHGR)
− Bounding fast flux
− Peak coolant temperature and velocity conditions & many more!

• The ELTA-CL design process aims to fulfill all requirements within 
the VTR core environment with no interference on the VTR core 
operation
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ELTA-CL Design Process

• Key design features:
− Fueled rods (fissile) in the cartridge
− Lead coolant flowing within the cartridge
− VTR sodium heat sink

• Self-contained flow loop and heat generation
− Multiple barriers

• The cartridge aims to satisfy regulatory (NRC) rigor
− Generate experimental data
− Validate models
− Domains of safe operation

• What’s the “?”
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ELTA-CL Design Process –
Baseline Design

• ELTA-CL baseline design
− Thin He gap
− Large lead volume
− Solid steel riser
− Preliminary calculations looked good

• Features included 
− He gap serving as the filler between safety barriers preventing 

lead leakage into the sodium core coolant
− Simple design

• Problem: Unexpectedly high gamma heating
− Must answer: 

§ How high?
§ How to mitigate?

Axial dimension of ELTA-CL in the CAD updated

He gap

Lead

Steel riser
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ELTA-CL Design Process – Baseline Design
• Utilize the high-fidelity MCNP model
• Model the ELTA-CL at internal and peripheral locations 
• Gamma heating

− 75-80% of heat deposition irrespective of position
− Magnitude of heat deposition is position dependent

• Cartridge heating values are excessively high
− Design modifications are a must

MCNP simulations of the VTR core highlighted that 
we needed to make significant design changes to 
accommodate the photon environment
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ELTA-CL Design Process –
Modified Design

• Revisited!
• Must lower lead temperature by:

− Increasing heat transfer
− Lowering heat (photon) deposition

• He safety gap changes
• Riser design modifications

− Convective heat transfer
− Expand the riser in the active core region
− Lower high Z atom density, lower photon heating

Low Z, low density!
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ELTA-CL Design Process –
Modified Design

• The modified design sufficiently reduced photon heating 
− Only in the peripheral position
− Determination: internal position has too high of a photon flux for a 

heavy metal cartridge

• Preliminary thermal calculations were simplified 1-D
− Higher fidelity thermal modeling needed, thus CFD

• Simulate temperature response in 3-D
− Determine radial temperature profile, compare to 1-D
− The max CFD temperature ~20 C higher 

• High fidelity multi-physics simulations informed that the local 
max temperature is above the design target
− More design work needed
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ELTA-CL Design Process –
“More” Modified Design

• Design changes ”to date” 
− Adjust safety barrier fill, riser design, peripheral location
− Still above design target by ~30ºC

• Next step, iterate on CFD simulations 
− Increase sodium flow rate (minimally effective)
− Investigate axial enrichment variation in the fuel (top)
− Increase “He pocket” within manufacturable tolerances (bottom)

• Successfully reduced max clad temperature to design target

Utilizing combined MCNP+CFD simulations, two 
viable design options have been determined
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ELTA-CL Design Process –
Connection with Collaborators

• Design process required frequent collaboration
− UNM Pb corrosion tests (LOBO loop)
− Westinghouse specifies design requirements
− Westinghouse, LANL colleagues, and ORNL collaborate 

on instrumentation designs

• MCNP simulations inform
− Westinghouse instrumentation
− Alternate cartridge design team photon heating constraints

• Characterization of cartridge behavior at alternate 
locations
− Multiple reflector locations (right)
− Cartridge placement dependent on design objectives
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ELTA-CL Design Process –
Conclusions

• MCNP based photon heating calculations have been invaluable
• Instrumentation design informed by neutron spectrum and flux (neutron and 

photon) intensities 
• Non-fueled ELTA-CL design decisions have been accelerated 
• Collaborations include aiding in the design of the ELTA-CG (”cartridge gas”), 

− INL & General Atomics material power depositions provided for rapid design 
iterations

Axial dimension of ELTA-CL in the CAD updated

High fidelity multi-physics simulations in particle transport (MCNP), and 
fluid flow (CFD) have been utilized in concert to rapidly mature the 
ELTA-CL design, and aid collaborators across numerous institutions
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Cartridge Effects on VTR Core

• Multiple cartridge configurations modeled
− Individual cartridge, 9 cartridge (shown)

• Evaluate power/flux distribution differential
• Pin power peaking differential
• Effects on kinetics parameters

− Overall reactor reactibity
− Reactivity coefficient, control rod worths, and 

more…
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Cartridge Effects on VTR Core
• 9 cartridge model 

− Limited impacts at the subassembly level
− Max power increase is ~0.6%

• Power increase in center, decrease in
periphery
− Power changes in the reflector/shield are not

included on the plot
• 9 cartridge reactivity impacts vary

− -250 to +40 pcm variations 
• Linear reactivity calculation 

− Single cartridge models estimate multi-
cartridge loading patterns

• Fueled assemblies can provide negative 
reactivity compared to empty locations!


